Approximations of Sturm-Liouville Eigenvalues Using Sinc-Galerkin and Differential Transform Methods
نویسنده
چکیده
In this paper, we present a comparative study of Sinc-Galerkin method and differential transform method to solve Sturm-Liouville eigenvalue problem. As an application, a comparison between the two methods for various celebrated Sturm-Liouville problems are analyzed for their eigenvalues and solutions. The study outlines the significant features of the two methods. The results show that these methods are very efficient, and can be applied to a large class of problems. The comparison of the methods shows that although the numerical results of these methods are the same, differential transform method is much easier, and more efficient than the Sinc-Galerkin method.
منابع مشابه
Inverse Laplace transform method for multiple solutions of the fractional Sturm-Liouville problems
In this paper, inverse Laplace transform method is applied to analytical solution of the fractional Sturm-Liouville problems. The method introduces a powerful tool for solving the eigenvalues of the fractional Sturm-Liouville problems. The results how that the simplicity and efficiency of this method.
متن کاملHomotopy perturbation method for eigenvalues of non-definite Sturm-Liouville problem
In this paper, we consider the application of the homotopy perturbation method (HPM) to compute the eigenvalues of the Sturm-Liouville problem (SLP) which is called non-definite SLP. Two important Examples show that HPM is reliable method for computing the eigenvalues of SLP.
متن کاملAsymptotic distributions of Neumann problem for Sturm-Liouville equation
In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.
متن کاملUse of the Sturm-Liouville problems in the seismic response of earth dams and embankments
In this paper, we obtain a suitable mathematical model for the seismic response of dams. By using the shear beam model (SB model), we give a mathematical formulation that it is a partial differential equation and transform it to the Sturm-Liouville equation.
متن کاملThe numerical values of the nodal points for the Sturm-Liouville equation with one turning point
An inverse nodal problem has first been studied for the Sturm-Liouville equation with one turning point. The asymptotic representation of the corresponding eigenfunctions of the eigenvalues has been investigated and an asymptotic of the nodal points is obtained. For this problem, we give a reconstruction formula for the potential function. Furthermore, numerical examples have been established a...
متن کامل